购物车中还没有商品,赶紧选购吧!
ISBN:
金融风险和衍生证券定价理论——从统计物理到风险管理 (第2版)(影印版)
商品价格
降价通知
定价
手机购买
商品二维码
领 券
配送
上海市
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:金融风险和衍生证券定价理论——从统计物理到风险管理 (第2版)(影印版)
物料号 :23982-00
重量:0.000千克
ISBN:9787040239829
出版社:高等教育出版社
出版年月:2008-06
作者:Jean-Philippe Boucha
定价:55.00
页码:379
装帧:平装
版次:1
字数:560
开本:16开
套装书:否

本书由剑桥大学出版社出版,原书名为:Financial Engineering and Computation: Principles, Mathematics, and Algorithms,是一本非常优秀的有关金融计算的图书。 如今打算在金融领域工作的学生和专家不仅要掌握先进的概念和数学模型,还要学会如何在计算上实现这些模型。《金融风险和衍生证券定价理论》内容广泛,不仅介绍了金融工程背后的理论和数学,并把重点放在了计算上,以便和金融工程在今天资本市场的实际运作保持一致。《金融风险和衍生证券定价理论》不同于大多数的有关投资、金融工程或者衍生证券方面的书,而是从金融的基本想法开始,逐步建立理论。作者提供了很多定价、风险评估以及项目组合管理的算法和理论。

1 Probability theory:basic notions
  1.1 Introduction
  1.2 Probability distributions
  1.3 Typical values and deviations
  1.4 Moments and characteristic function
  1.5 Divergence of moments-asymptotic behaviour
  1.6 Gaussian distribution
  1.7 Log-normal distribution
  1.8 Levy distributions and Paretian tails
  1.9 Other distributions(*)
  1.10 Summary
2 Maximum and addition of random variables
  2.1 Maximum of random variables
  2.2 Sums of random variables
   2.2.1 Convolutions
   2.2.2 Additivity of cumulants and of tail amplitudes
   2.2.3 Stable distributions and self-similarity
  2.3 Central limit theorem
   2.3.1 Convergence to a Gaussian
   2.3.2 Convergence to a Levy distribution
   2.3.3 Large deviations
   2.3.4 Steepest descent method and Cramer function(*)
   2.3.5 The CLT at work on simple cases
   2.3.6 Truncated Levy distributions
   2.3.7 Conclusion:survival and vanishing of tails
  2.4 From sum to max:progressive dominance of extremes(*)
  2.5 Linear correlations and fractional Brownian motion
  2.6 Summary
3 Continuous time limit, Ito calculus and path integrals
  3.1 Divisibility and the continuous time limit
   3.1.1 Divisibility
   3.1.2 Infinite divisibility
   3.1.3 Poisson jump processes
  3.2 Functions of the Brownian motion and Ito calculus
   3.2.1 Ito's lemma
   3.2.2 Novikov's formula
   3.2.3 Stratonovich's prescription
  3.3 Other techniques
   3.3.1 Path integrals
   3.3.2 Girsanov's formula and the Martin-Siggia-Rose trick(*)
  3.4 Summary
4 Analysis of empirical data
  4.1 Estimating probability distributions
   4.1.1 Cumulative distribution and densities-rank histogram
   4.1.2 Kolmogorov-Smirnov test
   4.1.3 Maximum likelihood
   4.1.4 Relative likelihood
   4.1.5 A general caveat
  4.2 Empirical moments:estimation and error
   4.2.1 Empirical mean
   4.2.2 Empirical variance and MAD
   4.2.3 Empirical kurtosis
   4.2.4 Error on the volatility
  4.3 Correlograms and variograms
   4.3.1 Variogram
   4.3.2 Correlogram
   4.3.3 Hurst exponent
   4.3.4 Correlations across different time zones
  4.4 Data with heterogeneous volatilities
  4.5 Summary
5 Financial products and financial markets
  5.1 Introduction
  5.2 Financial products
   5.2.1 Cash(Interbank market)
   5.2.2 Stocks
   5.2.3 Stock indices
   5.2.4 Bonds
   5.2.5 Commodities
   5.2.6 Derivatives
  5.3 Financial markets
   5.3.1 Market participants
   5.3.2 Market mechanisms
   5.3.3 Discreteness
   5.3.4 The order book
   5.3.5 The bid-ask spread
   5.3.6 Transaction costs
   5.3.7 Time zones, overnight, seasonalities
  5.4 Summary
6 Statistics of real prices:basic results
  6.1 Aim of the chapter
  6.2 Second-order statistics
   6.2.1 Price increments vs. returns
   6.2.2 Autocorrelation and power spectrum
  6.3 Distribution of returns over different time scales
   6.3.1 Presentation of the data
   6.3.2 The distribution of returns
   6.3.3 Convolutions
  6.4 Tails,what tails?
  6.5 Extreme markets
  6.6 Discussion
  6.7 Summary
7 Non-linear correlations and volatility fluctuations
  7.1 Non-linear correlations and dependence
   7.1.1 Non identical variables
   7.1.2 A stochastic volatility model
   7.1.3 GARCH(1,1)
   7.1.4 Anomalous kurtosis
   7.1.5 The case of infinite kurtosis
  7.2 Non-linear correlations in financial markets:empirical results
   7.2.1 Anomalous decay of the cumulants
   7.2.2 Volatility correlations and variogram
  7.3 Models and mechanisms
   7.3.1 Multifractality and multifractal models(*)
   7.3.2 The microstructure of volatility
  7.4 Summary
8 Skewness and price-volatility correlations
  8.1 Theoretical considerations
   8.1.1 Anomalous skewness of sums of random variables
   8.1.2 Absolute vs. relative price changes
   8.1.3 The additive-multiplicative crossover and the q-transformation
  8.2 A retarded model
   8.2.1 Definition and basic properties
   8.2.2 Skewness in the retarded model
  8.3 Price-volatility correlations:empirical evidence
   8.3.1 Leverage effect for stocks and the retarded model
   8.3.2 Leverage effect for indices
   8.3.3 Return-volume correlations
  8.4 The Heston model:a model with volatility fluctuations and skew
  8.5 Summary
9 Cross-correlations
  9.1 Correlation matrices and principal component analysis
   9.1.1 Introduction
   9.1.2 Gaussian correlated variables
   9.1.3 Empirical correlation matrices
  9.2 Non-Gaussian correlated variables
   9.2.1 Sums of non Gaussian variables
   9.2.2 Non-linear transformation of correlated Gaussian variables
   9.2.3 Copulas
   9.2.4 Comparison of the two models
   9.2.5 Multivariate Student distributions
   9.2.6 Multivariate Levy variables(*)
   9.2.7 Weakly non Gaussian correlated variables(*)
  9.3 Factors and clusters
   9.3.1 One factor models
   9.3.2 Multi-factor models
   9.3.3 Partition around medoids
   9.3.4 Eigenvector clustering
   9.3.5 Maximum spanning tree
  9.4 Summary
  9.5 Appendix A:central limit theorem for random matrices
  9.6 Appendix B: density of eigenvalues for random correlation matrices
10 Risk measures
  10.1 Risk measurement and diversification
  10.2 Risk and volatility
  10.3 Risk of loss, value at risk'(VaR) and expected shortfall
   10.3.1 Introduction
   10.3.2 Value-at-risk
   10.3.3 Expected shortfall
  10.4 Temporal aspects: drawdown and cumulated loss
  10.5 Diversification and utility-satisfaction thresholds
  10.6 Summary
11 Extreme correlations and variety
  11.1 Extreme event correlations
   11.1.1 Correlations conditioned on large market moves
   11.1.2 Real data and surrogate data
   11.1.3 Conditioning on large individual stock returns:exceedance correlations
   11.1.4 Tail dependence
   11.1.5 Tail covariance(*)
  11.2 Variety and conditional statistics of the residuals
   11.2.1 The variety
   11.2.2 The variety in the one-factor model
   11.2.3 Conditional variety of the residuals
   11.2.4 Conditional skewness of the residuals
  11.3 Summary
  11.4 Appendix C:some useful results on power-law variables
12 Optimal portfolios
  12.1 Portfolios of uncorrelated assets
   12.1.1 Uncorrelated Gaussian assets
   12.1.2 Uncorrelated'power-law' assets
   12.1.3 'Exponential' assets
   12.1.4 General case: optimal portfolio and VaR(*)
  12.2 Portfolios of correlated assets
   12.2.1 Correlated Gaussian fluctuations
   12.2.2 Optimal portfolios with non-linear constraints(*)
   12.2.3 'Power-law' fluctuations-linear model(*)
   12.2.4 'Power-law' fluctuations-Student model(*)
  12.3 Optimized trading
  12.4 Value-at-risk-general non-linear portfolios(*)
   12.4.1 Outline of the method: identifying worst cases
   12.4.2 Numerical test of the method
  12.5 Summary
13 Futures and options: fundamental concepts
  13.1 Introduction
   13.1.1 Aim of the chapter
   13.1.2 Strategies in uncertain conditions
   13.1.3 Trading strategies and efficient markets
  13.2 Futures and forwards
   13.2.1 Setting the stage
   13.2.2 Global financial balance
   13.2.3 Riskless hedge
   13.2.4 Conclusion:global balance and arbitrage
  13.3 Options:definition and valuation
   13.3.1 Setting the stage
   13.3.2 Orders of magnitude
   13.3.3 Quantitative analysis-option price
   13.3.4 Real option prices, volatility smile and ‘implied’kurtosis
   13.3.5 The case of an infinite kurtosis
  13.4 Summary
14 Options:hedging and residual risk
  14.1 Introduction
  14.2 Optimal hedging strategies
   14.2.1 A simple case: static hedging
   14.2.2 The general case and‘△’hedging
   14.2.3 Global hedging vs. instantaneous hedging
  14.3 Residual risk
   14.3.1 The Black-Scholes miracle
   14.3.2 The‘stop-loss’strategy does not work
   14.3.3 Instantaneous residual risk and kurtosis risk
   14.3.4 Stochastic volatility models
  14.4 Hedging errors. A variational point of view
  14.5 Other measures of risk-hedging and VaR (*)
  14.6 Conclusion of the chapter
  14.7 Summary
  14.8 Appendix D
15 Options: the role of drift and correlations
  15.1 Influence of drift on optimally hedged option
   15.1.1 A perturbative expansion
   15.1.2 ‘Risk neutral’probability and martingales
  15.2 Drift risk and delta-hedged options
   15.2.1 Hedging the drift risk
   15.2.2 The price of delta-hedged options
   15.2.3 A general option pricing formula
  15.3 Pricing and hedging in the presence of temporal correlations(*)
   15.3.1 A general model of correlations
   15.3.2 Derivative pricing with small correlations
   15.3.3 The case of delta-hedging
  15.4 Conclusion
   15.4.1 Is the price of an option unique?
   15.4.2 Should one always optimally hedge?
  15.5 Summary
  15.6 Appendix E
16 Options:the Black and Scholes model
  16.1 Ito calculus and the Black-Scholes equation
   16.1.1 The Gaussian Bachelier model
   16.1.2 Solution and Martingale
   16.1.3 Time value and the cost of hedging
   16.1.4 The Log-normal Black-Scholes model
   16.1.5 General pricing and hedging in a Brownian world
   16.1.6 The Greeks
  16.2 Drift and hedge in the Gaussian model(*)
   16.2.1 Constant drift
   16.2.2 Price dependent drift and the Ornstein-Uhlenbeck paradox
  16.3 The binomial model
  16.4 Summary
17 Options:some more specific problems
  17.1 Other elements of the balance sheet
   17.1.1 Interest rate and continuous dividends
   17.1.2 Interest rate corrections to the hedging strategy
   17.1.3 Discrete dividends
   17.1.4 Transaction costs
  17.2 Other types of options
   17.2.1 ‘Put-call’parity
   17.2.2 ‘Digital’options
   17.2.3 ‘Asian’options
   17.2.4 ‘American’options
   17.2.5 ‘Barrier’options(*)
   17.2.6 Other types of options
  17.3 The ‘Greeks’and risk control
  17.4 Risk diversification(*)
  17.5 Summary
18 Options:minimum variance Monte-Carlo
  18.1 Plain Monte-Carlo
   18.1.1 Motivation and basic principle
   18.1.2 Pricing the forward exactly
   18.1.3 Calculating the Greeks
   18.1.4 Drawbacks of the method
  18.2 An ‘hedged’Monte-Carlo method
   18.2.1 Basic principle of the method
   18.2.2 A linear parameterization of the price and hedge
   18.2.3 The Black-Scholes limit
  18.3 Non Gaussian models and purely historical option pricing
  18.4 Discussion and extensions. Calibration
  18.5 Summary
  18.6 Appendix F:generating some random variables
19 The yield curve
  19.1 Introduction
  19.2 The bond market
  19.3 Hedging bonds with other bonds
   19.3.1 The general problem
   19.3.2 The continuous time Gaussian limit
  19.4 The equation for bond pricing
   19.4.1 A general solution
   19.4.2 The Vasicek model
   19.4.3 Forward rates
   19.4.4 More general models
  19.5 Empirical study of the forward rate curve
   19.5.1 Data and notations
   19.5.2 Quantities of interest and data analysis
  19.6 Theoretical considerations(*)
   19.6.1 Comparison with the Vasicek model
   19.6.2 Market price of risk
   19.6.3 Risk-premium and the θ law
  19.7 Summary
  19.8 Appendix G:optimal portfolio of bonds
20 Simple mechanisms for anomalous price statistics
  20.1 Introduction
  20.2 Simple models for herding and mimicry
   20.2.1 Herding and percolation
   20.2.2 Avalanches of opinion changes
  20.3 Models of feedback effects on price fluctuations
   20.3.1 Risk-aversion induced crashes
   20.3.2 A simple model with volatility correlations and tails
   20.3.3 Mechanisms for long ranged volatility correlations
  20.4 The Minority Game
  20.5 Summary
Index of most important symbols

金融数学与精算学系列

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加