购物车中还没有商品,赶紧选购吧!
ISBN:
应用反问题中的计算方法(英文版)
商品价格
降价通知
定价
手机购买
商品二维码
领 券
配送
上海市
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:应用反问题中的计算方法(英文版)
物料号 :34499-00
重量:0.000千克
ISBN:9787040344998
出版社:高等教育出版社
出版年月:2012-10
作者:王彦飞, Anatoly G. Yagola, 杨长春
定价:139.00
页码:530
装帧:精装
版次:1
字数:640
开本:16开
套装书:否

The book covers many directions in the modern theory of inverse and illposed problems: mathematical physics, optimal inverse design, inverse scattering, inverse vibration, biomedical imaging, oceanography, seismic imaging and remote sensing; methods including standard regularization,parallel computing for multidimensional problems, Nystr6m method,numerical differentiation, analytic continuation, perturbation regularization,filtering, optimization and sparse solving methods are fully addressed.

Front Matter
I Introduction
1 S. I. Kabanikhin Inverse Problems of Mathematical Physics
  1.1 Introduction
  1.2 Examples of Inverse and Ill-posed Problems
  1.3 Well-posed and Ill-posed Problems
  1.4 The Tikhonov Theorem
  1.5 The Ivanov Theorem: Quasi-solution
  1.6 The Lavrentiev’sMethod
  1.7 The Tikhonov RegularizationMethod
  References
II Recent Advances in Regularization Theory and Methods
2 D. V. Lukyanenko and A. G. Yagola Using Parallel Computing for Solving Multidimensional Ill-posed Problems
  2.1 Introduction
  2.2 Using Parallel Computing
   2.2.1 Main idea of parallel computing
   2.2.2 Parallel computing limitations
  2.3 Parallelization of Multidimensional Ill-posed Problem
   2.3.1 Formulation of the problem and method of solution
   2.3.2 Finite-difference approximation of the functional and its gradient
   2.3.3 Parallelization of the minimization problem
  2.4 Some Examples of Calculations
  2.5 Conclusions
  References
3 M. T. Nair Regularization of Fredholm Integral Equations of the First Kind using Nystr Approximation
  3.1 Introduction
  3.2 NystrMethod for Regularized Equations
   3.2.1 Nystr approximation of integral operators
   3.2.2 Approximation of regularized equation
   3.2.3 Solvability of approximate regularized equation
   3.2.4 Method of numerical solution
  3.3 Error Estimates
   3.3.1 Some preparatory results
   3.3.2 Error estimate with respect to _ · _2
   3.3.3 Error estimate with respect to _ · _∞
   3.3.4 A modified method
  3.4 Conclusion
  References
4 T. Y. Xiao, H. Zhang and L. L. Hao Regularization of Numerical Differentiation: Methods and Applications
  4.1 Introduction
  4.2 Regularizing Schemes
   4.2.1 Basic settings
   4.2.2 Regularized difference method (RDM)
   4.2.3 Smoother-Based regularization (SBR)
   4.2.4 Mollifier regularization method (MRM)
   4.2.5 Tikhonov’s variational regularization (TiVR)
   4.2.6 Lavrentiev regularization method (LRM)
   4.2.7 Discrete regularizationmethod (DRM)
   4.2.8 Semi-Discrete Tikhonov regularization (SDTR)
   4.2.9 Total variation regularization (TVR)
  4.3 Numerical Comparisons
  4.4 Applied Examples
   4.4.1 Simple applied problems
   4.4.2 The inverse heat conduct problems (IHCP)
   4.4.3 The parameter estimation in new product diffusion model
   4.4.4 Parameter identification of sturm-liouville operator
   4.4.5 The numerical inversion of Abel transform
   4.4.6 The linear viscoelastic stress analysis
  4.5 Discussion and Conclusion
  References
5 C. L. Fu, H. Cheng and Y. J. Ma Numerical Analytic Continuation and Regularization
  5.1 Introduction
  5.2 Description of the Problems in Strip Domain and Some Assumptions
   5.2.1 Description of the problems
   5.2.2 Some assumptions
   5.2.3 The ill-posedness analysis for the Problems 5.2.1 and 5.2.2
   5.2.4 The basic idea of the regularization for Problems 5.2.1 and 5.2.2
  5.3 Some RegularizationMethods
   5.3.1 Some methods for solving Problem 5.2.1
   5.3.2 Some methods for solving Problem 5.2.2
  5.4 Numerical Tests
  References
6 G. S. Li An Optimal Perturbation Regularization Algorithm for Function Reconstruction and Its Applications
  6.1 Introduction
  6.2 The Optimal Perturbation Regularization Algorithm
  6.3 Numerical Simulations
   6.3.1 Inversion of time-dependent reaction coefficient
   6.3.2 Inversion of space-dependent reaction coefficient
   6.3.3 Inversion of state-dependent source term
   6.3.4 Inversion of space-dependent diffusion coefficient
  6.4 Applications
   6.4.1 Determining magnitude of pollution source
   6.4.2 Data reconstruction in an undisturbed soil-column experiment
  6.5 Conclusions
  References
7 L. V. Zotov and V. L. Panteleev Filtering and Inverse Problems Solving
  7.1 Introduction
  7.2 SLAE Compatibility
  7.3 Conditionality
  7.4 Pseudosolutions
  7.5 Singular Value Decomposition
  7.6 Geometry of Pseudosolution
  7.7 Inverse Problems for the Discrete Models of Observations
  7.8 TheModel in Spectral Domain
  7.9 Regularization of Ill-posed Systems
  7.10 General Remarks, the Dilemma of Bias and Dispersion
  7.11 Models, Based on the Integral Equations
  7.12 Panteleev Corrective Filtering
  7.13 Philips-Tikhonov Regularization
  References
III Optimal Inverse Design and Optimization Methods
8 G. S. Dulikravich and I. N. Egorov Inverse Design of Alloys’ Chemistry for Specified Thermo-Mechanical Properties by using Multi-objective Optimization
  8.1 Introduction
  8.2 Multi-Objective Constrained Optimization and Response Surfaces
  8.3 Summary of IOSO Algorithm
  8.4 Mathematical Formulations of Objectives and Constraints
  8.5 Determining Names of Alloying Elements and Their Concentrations for Specified Properties of Alloys
  8.6 Inverse Design of Bulk Metallic Glasses
  8.7 Open Problems
  8.8 Conclusions
  References
9 Z. H. Xiang Two Approaches to Reduce the Parameter Identification Errors
  9.1 Introduction
  9.2 The Optimal Sensor Placement Design
   9.2.1 The well-posedness analysis of the parameter identification procedure
   9.2.2 The algorithm for optimal sensor placement design
   9.2.3 The integrated optimal sensor placement and parameter identification algorithm
   9.2.4 Examples
  9.3 The Regularization Method with the Adaptive Updating of Apriori Information
   9.3.1 Modified extended Bayesian method for parameter identification
   9.3.2 The well-posedness analysis of modified extended Bayesianmethod
   9.3.3 Examples
  9.4 Conclusion
  References
10 Y. H. Dai A General Convergence Result for the BFGS Method
  10.1 Introduction
  10.2 The BFGS Algorithm
  10.3 A General Convergence Result for the BFGS Algorithm
  10.4 Conclusion and Discussions
  References
IV Recent Advances in Inverse Scattering
11 X. D. Liu and B. Zhang Uniqueness Results for Inverse Scattering Problems
  11.1 Introduction
  11.2 Uniqueness for Inhomogeneity n
  11.3 Uniqueness for Smooth Obstacles
  11.4 Uniqueness for Polygon or Polyhedra
  11.5 Uniqueness for Balls or Discs
  11.6 Uniqueness for Surfaces or Curves
  11.7 Uniqueness Results in a LayeredMedium
  11.8 Open Problems
  References
12 G. Bao and P. J. Li Shape Reconstruction of Inverse Medium Scattering for the Helmholtz Equation
  12.1 Introduction
  12.2 Analysis of the scatteringmap
  12.3 Inversemedium scattering
   12.3.1 Shape reconstruction
   12.3.2 Born approximation
   12.3.3 Recursive linearization
  12.4 Numerical experiments
  12.5 Concluding remarks
  References
V Inverse Vibration, Data Processing and Imaging
13 G. M. Kuramshina, I. V. Kochikov and A. V. Stepanova Numerical Aspects of the Calculation of Molecular Force Fields from Experimental Data
  13.1 Introduction
  13.2 Molecular Force FieldModels
  13.3 Formulation of Inverse Vibration Problem
  13.4 Constraints on the Values of Force Constants Based on Quantum Mechanical Calculations
  13.5 Generalized Inverse Structural Problem
  13.6 Computer Implementation
  13.7 Applications
  References
14 J. J. Liu and H. L. Xu Some Mathematical Problems in Biomedical Imaging
  14.1 Introduction
  14.2 MathematicalModels
   14.2.1 Forward problem
   14.2.2 Inverse problem
  14.3 Harmonic Bz Algorithm
   14.3.1 Algorithmdescription
   14.3.2 Convergence analysis
   14.3.3 The stable computation of ΔBz
  14.4 Integral EquationsMethod
   14.4.1 Algorithmdescription
   14.4.2 Regularization and discretization
  14.5 Numerical Experiments
  References
VI Numerical Inversion in Geosciences
15 S. I. Kabanikhin and M. A. Shishlenin Numerical Methods for Solving Inverse Hyperbolic Problems
  15.1 Introduction
  15.2 Gel’fand-Levitan-KreinMethod
   15.2.1 The two-dimensional analogy of Gel’fand-Levitan-Krein equation
   15.2.2 N-approximation of Gel’fand-Levitan-Krein equation
   15.2.3 Numerical results and remarks
  15.3 Linearized Multidimensional Inverse Problem for the Wave Equation
   15.3.1 Problemformulation
   15.3.2 Linearization
  15.4 Modified Landweber Iteration
   15.4.1 Statement of the problem
   15.4.2 Landweber iteration
   15.4.3 Modification of algorithm
   15.4.4 Numerical results
  References
16 H. B. Song, X. H. Huang, L. M. Pinheiro, Y. Song, C. Z. Dong and Y.Bai Inversion Studies in Seismic Oceanography
  16.1 Introduction of Seismic Oceanography
  16.2 Thermohaline Structure Inversion
   16.2.1 Inversion method for temperature and salinity
   16.2.2 Inversion experiment of synthetic seismic data
   16.2.3 Inversion experiment of GO data (Huang et al., 2011)
  16.3 Discussion and Conclusion
  References
17 L. J. Gelius Image Resolution Beyond the Classical Limit
  17.1 Introduction
  17.2 Aperture and Resolution Functions
  17.3 Deconvolution Approach to Improved Resolution
  17.4 MUSIC Pseudo-Spectrum Approach to Improved Resolution
  17.5 Concluding Remarks
  References
18 Y. F. Wang, Z. H. Li and C. C. Yang Seismic Migration and Inversion
  18.1 Introduction
  18.2 MigrationMethods: A Brief Review
   18.2.1 Kirchhoffmigration.
   18.2.2 Wave field extrapolation
   18.2.3 Finite difference migration in ω ? X domain
   18.2.4 Phase shift migration.
   18.2.5 Stoltmigration
   18.2.6 Reverse timemigration
   18.2.7 Gaussian beam migration
   18.2.8 Interferometricmigration
   18.2.9 Ray tracing
  18.3 SeismicMigration and Inversion
   18.3.1 The forwardmodel
   18.3.2 Migration deconvolution
   18.3.3 Regularization model
   18.3.4 Solving methods based on optimization
   18.3.5 Preconditioning
   18.3.6 Preconditioners
  18.4 Illustrative Examples
   18.4.1 Regularized migration inversion for point diffraction scatterers
   18.4.2 Comparison with the interferometric migration
  18.5 Conclusion
  References
19 Y. F. Wang, J. J. Cao, T. Sun and C. C. Yang Seismic Wavefields Interpolation Based on Sparse Regularization and Compressive Sensing
  19.1 Introduction
  19.2 Sparse Transforms
   19.2.1 Fourier, wavelet, Radon and ridgelet transforms
   19.2.2 The curvelet transform
  19.3 Sparse RegularizingModeling
   19.3.1 Minimization in l0 space
   19.3.2 Minimization in l1 space
   19.3.3 Minimization in lp-lq space
  19.4 Brief Review of Previous Methods in Mathematics
  19.5 Sparse OptimizationMethods
   19.5.1 l0 quasi-normapproximationmethod
   19.5.2 l1-normapproximationmethod
   19.5.3 Linear programmingmethod
   19.5.4 Alternating directionmethod
   19.5.5 l1-norm constrained trust region method
  19.6 Sampling
  19.7 Numerical Experiments
   19.7.1 Reconstruction of shot gathers
   19.7.2 Field data
  19.8 Conclusion
  References
20 H. Yang Some Researches on Quantitative Remote Sensing Inversion
  20.1 Introduction
  20.2 Models
  20.3 A PrioriKnowledge
  20.4 Optimization Algorithms
  20.5 Multi-stage Inversion Strategy
  20.6 Conclusion
  References
Index

组合数学丛书

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加