前辅文
第零章预备知识
记号
0.1 局部化
0.2 代数扩张
0.3 态射扩张
0.4 Galois 扩张
0.5 迹和范
0.6 有限域
0.7 过滤
0.8 无穷扩张
0.9 特征标
习题
第一部分数域论
第一章理想
1.1 Dedekind 环
1.2 理想的分解
1.3 Dedekind 环扩张
1.4 理想的迹和范
1.5 判别式
1.6 Hilbert 分歧理论
1.7 理想类群
1.8 Picard 群
1.9 Grothendieck 群
习题
第二章格
2.1 Minkowski 理论
2.2 加性结构
2.3 乘性结构
2.4 理想估值
2.5 L-函数
2.6 密度
习题
第三章完备域
3.1 赋值域
3.2 赋值域扩张
3.3 完备域扩张
3.4 局部数域
3.5 形式群
3.6 数域的赋值
习题
第四章类群
4.1 加元环
4.2 理元群
4.3 理元类群
4.4 理想
习题
第二部分同调论
第五章上同调群
5.1 有限群的同调群
5.2 张量积
5.3 Tate 定理
5.4 射影有限群的同调群
5.5 类成
5.6 域的上同调
5.7 Kummer 扩张
习题
第六章局部域的上同调群
6.1 无分歧扩张
6.2 局部互反律
6.3 分圆域
习题
第七章理元类的上同调群
7.1 理元的上同调群
7.2 计算H1
7.3 计算H2
7.4 整体互反律
7.5 Weil 群
7.6 注记
习题
第八章对偶定理
8.1 有限群的同调群
8.2 射影有限群的上同调群
8.3 谱序列
8.4 成对偶模
8.5 类成对偶
8.6 局部对偶
8.7 整体对偶
8.8 Pi 和Ш
8.9 Poitou-Tate 序列
8.10 后记: 上同调理论和数论
习题
第三部分p 进理论
第九章p 进分析
9.1 Cp
9.2 滤子
9.3 球完备性
9.4 Banach 空间
9.5 Fréchet 空间
9.6 算子空间
9.7 p 进插值
9.8 p 进测度
习题
第十章赋值环
10.1 光滑环
10.2 离散赋值环
10.3 Witt 环
10.4 Hensel 环
10.5 Cohen 环
10.6 分歧群
10.7 单位群
10.8 最大交换扩张
10.9 全分歧Zp 扩张
10.10 范域
10.11 完全化
习题
第十一章Galois 表示
11.1 晶体
11.2 CK
11.3 非交换1 上同调
11.4 在GLn(Cp) 的上同调
11.5 模
11.6 模
11.7 幂级数环
11.8 周期环
11.9 进Galois 表示
11.10 p 进Galois 表示
习题
第十二章L-函数
12.1 调和分析
12.2 特征标
12.3 Z 积分
12.4 Hecke L-函数454 12.5 Artin L-函数
习题
第四部分补充材料
附录: 代数数论百年历史回顾及分期初探
A.1 奠基时代
A.2 第一波—— 类域论
A.3 第二波—— p 进世界
A.4 第三波—— 代数群的调和分析
A.5 第四波—— 算术代数几何学
A.6 第五波—— 世界大同伦
索引