购物车中还没有商品,赶紧选购吧!
ISBN:
代数数论
商品价格
降价通知
定价
手机购买
商品二维码
配送
上海市
服务
高教自营 发货并提供售后服务。
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:代数数论
物料号 :46483-00
重量:0.000千克
ISBN:9787040464832
出版社:高等教育出版社
出版年月:2016-09
作者:黎景辉
定价:89.00
页码:512
装帧:平装
版次:1
字数:680
开本:16开
套装书:否

本书是为数学系研究生讲当代的基础代数数论,亦合适数学系三四年级本科生学习。全书分为三部分:数域论、同调论和p 进理论。在数域论中讲述代数数论的中心思想:局部- 整体数论;在同调论中用同调代数方法讲类域论的核心结构:类成;在p 进理论中,我们从无穷维p 进泛函分析开始,然后讨论赋值环结构、晶体和Galois 表示。全书由Dedekind环开始,而以Dedekind 环的L-函数结束。代数数论在各种电子信息工程中的应用与日俱增,本书的内容是使用代数数论的人必备的知识。

本书适合大学数学系的本科生和研究生阅读参考。

前辅文
第零章预备知识
  记号
  0.1 局部化
  0.2 代数扩张
  0.3 态射扩张
  0.4 Galois 扩张
  0.5 迹和范
  0.6 有限域
  0.7 过滤
  0.8 无穷扩张
  0.9 特征标
  习题
第一部分数域论
  第一章理想
   1.1 Dedekind 环
   1.2 理想的分解
   1.3 Dedekind 环扩张
   1.4 理想的迹和范
   1.5 判别式
   1.6 Hilbert 分歧理论
   1.7 理想类群
   1.8 Picard 群
   1.9 Grothendieck 群
   习题
  第二章格
   2.1 Minkowski 理论
   2.2 加性结构
   2.3 乘性结构
   2.4 理想估值
   2.5 L-函数
   2.6 密度
   习题
  第三章完备域
   3.1 赋值域
   3.2 赋值域扩张
   3.3 完备域扩张
   3.4 局部数域
   3.5 形式群
   3.6 数域的赋值
   习题
  第四章类群
   4.1 加元环
   4.2 理元群
   4.3 理元类群
   4.4 理想
   习题
第二部分同调论
  第五章上同调群
   5.1 有限群的同调群
   5.2 张量积
   5.3 Tate 定理
   5.4 射影有限群的同调群
   5.5 类成
   5.6 域的上同调
   5.7 Kummer 扩张
   习题
  第六章局部域的上同调群
   6.1 无分歧扩张
   6.2 局部互反律
   6.3 分圆域
   习题
  第七章理元类的上同调群
   7.1 理元的上同调群
   7.2 计算H1
   7.3 计算H2
   7.4 整体互反律
   7.5 Weil 群
   7.6 注记
   习题
  第八章对偶定理
   8.1 有限群的同调群
   8.2 射影有限群的上同调群
   8.3 谱序列
   8.4 成对偶模
   8.5 类成对偶
   8.6 局部对偶
   8.7 整体对偶
   8.8 Pi 和Ш
   8.9 Poitou-Tate 序列
   8.10 后记: 上同调理论和数论
   习题
第三部分p 进理论
  第九章p 进分析
   9.1 Cp
   9.2 滤子
   9.3 球完备性
   9.4 Banach 空间
   9.5 Fréchet 空间
   9.6 算子空间
   9.7 p 进插值
   9.8 p 进测度
   习题
  第十章赋值环
   10.1 光滑环
   10.2 离散赋值环
   10.3 Witt 环
   10.4 Hensel 环
   10.5 Cohen 环
   10.6 分歧群
   10.7 单位群
   10.8 最大交换扩张
   10.9 全分歧Zp 扩张
   10.10 范域
   10.11 完全化
   习题
  第十一章Galois 表示
   11.1 晶体
   11.2 CK
   11.3 非交换1 上同调
   11.4 在GLn(Cp) 的上同调
   11.5 模
   11.6 模
   11.7 幂级数环
   11.8 周期环
   11.9 进Galois 表示
   11.10 p 进Galois 表示
   习题
  第十二章L-函数
   12.1 调和分析
   12.2 特征标
   12.3 Z 积分
   12.4 Hecke L-函数454 12.5 Artin L-函数
   习题
第四部分补充材料
  附录: 代数数论百年历史回顾及分期初探
   A.1 奠基时代
   A.2 第一波—— 类域论
   A.3 第二波—— p 进世界
   A.4 第三波—— 代数群的调和分析
   A.5 第四波—— 算术代数几何学
   A.6 第五波—— 世界大同伦
  索引

黎景辉,澳大利亚悉尼大学数学系教授,国际知名的数学家。1974年在美国耶鲁大学获博士学位,曾在世界上若干重要的研究机构和高等学校任职,主要的研究方向是代数学,在现代数论的主要方向 (模形式与自守表示、算术代数几何) 上都有很深的造诣。

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加