分析学包括微分学与积分学。在几何中,也有对应的微分几何和积分几何。本书介绍几何的这两个方面,包含四部分。第一部分内容是1971年陈省身在国际数学家大会上所作的1小时报告,向学生和非专家介绍微分几何当时的整体面貌。作者首先简要介绍历史概况,概述了一些基本概念和工具,并介绍了当时微分几何的五个分支:正曲率流形、曲率和欧拉特征、极小子流形、等距映射、全纯映射。第二部分系统地介绍了积分几何。第三部分为微分流形,是作者在1959年微分几何正成为数学的一个主要领域时所写的讲义,该讲义给出了微分流形和微分几何的平稳和快速的引入,给当时的数学界送来一股清新之风。第四部分为积分几何,提供了一个高效但通俗易懂的介绍,并给出了对整个数学的全局的观点。 例如,除了介绍在欧氏空间中的积分几何的标准主题,它还讨论了齐次空间的积分几何。 本书不仅对初学者非常有价值,对科研工作者也是很好的补充阅读材料。 |
前辅文 |
|
|
|
陈省身是20世纪重要的微分几何学家,被誉为“微分几何之父”。早在十九世纪四十年代,陈省身结合微分几何与拓扑学的方法,完成了两项划时代的重要工作:高斯-博内-陈定理和Hermitian流形的示性类理论,为大范围微分几何提供了不可缺少的工具。这些概念和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分。 |
|
|
|
|
|
|