在微分几何和拓扑学中,人们常常处理微分方程组和偏微分不等式,它们不管加上什么边界条件总有无穷多个解。在1950年代人们发现,这种类型的微分关系(即等式或不等式)的可解性常常可以化为一个纯粹的具同伦论性质的问题。在此情形下人们说:相应的微分关系满足 h-原理。h-原理的两个著名例子是:黎曼几何中Nash-Kuiper的 C1-等度嵌入理论和微分拓扑中的Smale-Hirsch浸没理论,它们后来被Gromov转换为建立h-原理的强有力的一般方法。 作者介绍了h-原理的两个主要证明方法:完整性近似和凸积分。除了几个著名的例外,h-原理的大部分例子都可以用这里的方法来处理。本书还特别强调了辛几何和切触几何的应用。 作者的名著Partial Differential Relations是面向专家的关于h-原理的百科全书,而本书则是第一本关于此理论及其应用的能被广泛接受的论著。本书是关于解偏微分等式和不等式几何方法的一本很好的数学著作。学习几何、拓扑和分析的人都可从中深受裨益。 |
|
|
|
|
Y. Eliashberg,美国斯坦福大学 (Stanford University) 数学系教授,主要研究方向为几何分析,出版多部学术论文与专著。 N. Mishachev, 俄罗斯利佩茨克技术大学 (Lipetsk Technical University) 数学系教授,主要研究方向为几何分析,出版多部学术论文与专著。 |
|
|
|
|
|
|