高木贞治是近代日本数学的代表性人物,他于1920年证明了任何Abel扩张均为类域并完全解决了虚二次数域上的Kronecker猜想,引起了类域论的巨大突破;1932年被选为国际数学家大会主席及第一届菲尔兹奖评委会成员。此外,他在数学教育方面也颇有贡献,编写了许多大学教材、专著、中小学教科书以及科普读物,比较有代表性的科普作品有《数学杂谈》和《近世数学史谈》等。 本书是高木贞治的一本优秀的科普读物,源于作者的《续新高等数学讲座》中的部分内容,完成于1931年。全书共分为23小节,通过对大数学家Gauss以及著名数学家Cauchy,Abel,Galois,Dirichlet 等人的生平和学术成就的介绍,以轻松的杂谈形式展示了18世纪末到19世纪中叶数学发展的历史概貌,语言风趣幽默、通俗易懂。本书可供广大学生、教师和学者阅读,也可作为数学爱好者的休闲读物。 |
前辅文 |
|
|
|
|
|
|
|
|
|
|