购物车中还没有商品,赶紧选购吧!
ISBN:
常微分方程与动力系统(影印版)
商品价格
降价通知
定价
手机购买
商品二维码
配送
上海市
服务
高教自营 发货并提供售后服务。
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:常微分方程与动力系统(影印版)
物料号 :55648-00
重量:0.000千克
ISBN:9787040556483
出版社:高等教育出版社
出版年月:2021-03
作者:Gerald Teschl
定价:169.00
页码:380
装帧:精装
版次:1
字数:630
开本
套装书:否
https://gjs.bg-online.com.cn/blobdata/20210805/0F6AE15B56554467B1E64037916C7097.jpg

本书为低年级研究生提供了一个关于常微分方程和动力系统的自封式的导引。 第一部分从一些显式可解方程的简单例子和对定性方法的初步了解开始;然后证明了有关初值问题的基本结果:存在性,唯一性,可延拓性,对初始条件的依赖性;此外,还考虑了线性方程组,包括Floquet定理和一些摄动结果;作为有些独立的主题,本部分还建立了复数域中线性方程组的Frobenius方法,研究了Sturm-Liouville边值问题(包括振动理论)。 第二部分介绍了动力系统的概念,证明了Poincaré-Bendixson定理,并研究了来自经典力学、生态学和电气工程的平面系统的几个例子;此外,还讨论了吸引子、Hamilton系统、KAM定理和周期解;最后,研究了稳定性,包括连续系统和离散系统的稳定流形和Hartman-Grobman定理。 第三部分介绍了混沌,从迭代区间映射的基础知识开始,以Smale-Birkhoff定理和同宿轨道的Melnikov方法结束。 本书包含近300道习题。此外,数学软件系统的使用贯穿始终,展示了使用软件如何帮助读者研究微分方程。

前辅文
Part 1. Classical theory
  Chapter 1. Introduction
   §1.1. Newton’s equations
   §1.2. Classification of differential equations
   §1.3. First-order autonomous equations
   §1.4. Finding explicit solutions
   §1.5. Qualitative analysis of first-order equations
   §1.6. Qualitative analysis of first-order periodic equations
  Chapter 2. Initial value problems
   §2.1. Fixed point theorems
   §2.2. The basic existence and uniqueness result
   §2.3. Some extensions
   §2.4. Dependence on the initial condition
   §2.5. Regular perturbation theory
   §2.6. Extensibility of solutions
   §2.7. Euler’s method and the Peano theorem
  Chapter 3. Linear equations
   §3.1. The matrix exponential
   §3.2. Linear autonomous first-order systems
   §3.3. Linear autonomous equations of order n
   §3.4. General linear first-order systems
   §3.5. Linear equations of order n
   §3.6. Periodic linear systems
   §3.7. Perturbed linear first-order systems
   §3.8. Appendix: Jordan canonical form
  Chapter 4. Differential equations in the complex domain
   §4.1. The basic existence and uniqueness result
   §4.2. The Frobenius method for second-order equations
   §4.3. Linear systems with singularities
   §4.4. The Frobenius method
  Chapter 5. Boundary value problems
   §5.1. Introduction
   §5.2. Compact symmetric operators
   §5.3. Sturm–Liouville equations
   §5.4. Regular Sturm–Liouville problems
   §5.5. Oscillation theory
   §5.6. Periodic Sturm–Liouville equations
Part 2. Dynamical systems
  Chapter 6. Dynamical systems
   §6.1. Dynamical systems
   §6.2. The flow of an autonomous equation
   §6.3. Orbits and invariant sets
   §6.4. The Poincar´e map
   §6.5. Stability of fixed points
   §6.6. Stability via Liapunov’s method
   §6.7. Newton’s equation in one dimension
  Chapter 7. Planar dynamical systems
   §7.1. Examples from ecology
   §7.2. Examples from electrical engineering
   §7.3. The Poincar´e–Bendixson theorem
  Chapter 8. Higher dimensional dynamical systems
   §8.1. Attracting sets
   §8.2. The Lorenz equation
   §8.3. Hamiltonian mechanics
   §8.4. Completely integrable Hamiltonian systems
   §8.5. The Kepler problem
   §8.6. The KAM theorem
  Chapter 9. Local behavior near fixed points
   §9.1. Stability of linear systems
   §9.2. Stable and unstable manifolds
   §9.3. The Hartman–Grobman theorem
   §9.4. Appendix: Integral equations
Part 3. Chaos
  Chapter 10. Discrete dynamical systems
   §10.1. The logistic equation
   §10.2. Fixed and periodic points
   §10.3. Linear difference equations
   §10.4. Local behavior near fixed points
  Chapter 11. Discrete dynamical systems in one dimension
   §11.1. Period doubling
   §11.2. Sarkovskii’s theorem
   §11.3. On the definition of chaos
   §11.4. Cantor sets and the tent map
   §11.5. Symbolic dynamics
   §11.6. Strange attractors/repellers and fractal sets
   §11.7. Homoclinic orbits as source for chaos
  Chapter 12. Periodic solutions
   §12.1. Stability of periodic solutions
   §12.2. The Poincar´e map
   §12.3. Stable and unstable manifolds
   §12.4. Melnikov’s method for autonomous perturbations
   §12.5. Melnikov’s method for nonautonomous perturbations
  Chapter 13. Chaos in higher dimensional systems
   §13.1. The Smale horseshoe
   §13.2. The Smale–Birkhoff homoclinic theorem
   §13.3. Melnikov’s method for homoclinic orbits
Bibliographical notes
Bibliography
Glossary of notation
Index

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加