本书涵盖了用于理解神经网络原理的必要统计力学知识,包括复本方法、空腔方法、平均场近似、变分法、随机能量模型、Nishimori条件、动力学平均场理论、对称性破缺、随机矩阵理论等,同时详细描述了监督学习、无监督学习、联想记忆网络、感知器网络、随机循环网络等神经网络及其功能的物理模型以及解析理论,通过简洁的模型展示了神经网络原理的数学美和物理深度,介绍了相关历史并展望了未来研究的重要课题,可供对神经网络原理感兴趣的学生、研究人员以及工程师参考使用。