纽结理论,作为纽结的数学的生动阐述,将吸引各种各样的读者,从寻求传统研究范围之外的经验的本科生,到想要这一学科的从容介绍的数学家。开始进一步研究计划的研究生将发现一个有价值的概述,读者不需要线性代数以外的训练就能理解书中展现的数学知识。当来自线性代数和基本群论的工具被引入来研究纽结的性质时,拓扑和代数之间的相互作用,称为代数拓扑,在书中提早出现。 Livingston通过展示如何使用线性代数的技巧来解决一些复杂问题的主题(包括数学最美丽的主题之一——对称)的一般研究来引导读者。本书最后讨论了高维纽结理论,并介绍了该学科的一些最新进展——Conway, Jones和Kauffman多项式。补充部分介绍了作为代数拓扑核心的基本群。 |
|
|
|
|
|
|
|
|
|
|
|