购物车中还没有商品,赶紧选购吧!
ISBN:
Handbook of Group Actions(群作用手册)(第 I 卷)
商品价格
降价通知
定价
手机购买
商品二维码
配送
上海市
服务
高教自营 发货并提供售后服务。
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:Handbook of Group Actions(群作用手册)(第 I 卷)
物料号 :41363-00
重量:0.000千克
ISBN:9787040413632
出版社:高等教育出版社
出版年月:2014-12
作者:季理真, Papadopoulos, 丘成桐
定价:128.00
页码:602
装帧:精装
版次:1
字数:970
开本:16开
套装书:否

群和群作用是数学研究的重要对象,拥有强大的力量并且富于美感,这可以通过它广泛出现在诸多不同的科学领域体现出来。

此多卷本手册由相关领域专家撰写的一系列综述文章组成,首次系统地展现了群作用及其应用,内容囊括经典主题的讨论、近来的热点专业问题的论述,有些文章还涉及相关的历史。《群作用手册(第1卷)》填补了数学著作中的一项空白,适合于从初学者到相关领域专家的各个层次读者阅读。

前辅文
Part I: Geometries and General Group Actions
  Geometry of Singular Space
  Shing-Tung Yau
   1 The development of modern geometry that influenced ourconcept of space
   2 Geometry of singular spaces
   3 Geometry for Einstein equation and special holonomy group
   4 The Laplacian and the construction of generalized Riemanniangeometry in terms of operators
   5 Differential topology of the operator geometry
   6 Inner product on tangent spaces and Hodge theory
   7 Gauge groups, convergence of operator manifolds and Yang-Millstheory
   8 Generalized manifolds with special holonomy groups
   9 Maps, subspaces and sigmamodels
   10 Noncompactmanifolds
   11 Discrete spaces
   12 Conclusion
   13 Appendix
  References
  A Summary of Topics Related to Group Actions
  Lizhen Ji
   1 Introduction
   2 Different types of groups
   3 Different types of group actions
   4 How do group actions arise
   5 Spaces which support group actions
   6 Compact transformation groups
   7 Noncompact transformation groups
   8 Quotient spaces of discrete group actions
   9 Quotient spaces of Lie groups and algebraic group actions
   10 Understanding groups via actions
   11 How to make use of symmetry
   12 Understanding and classifying nonlinear actions of groups
   13 Applications of finite group actions in combinatorics
   14 Applications in logic
   15 Groups and group actions in algebra
   16 Applications in analysis
   17 Applications in probability
   18 Applications in number theory
   19 Applications in algebraic geometry
   20 Applications in differential geometry
   21 Applications in topology
   22 Group actions and symmetry in physics
   23 Group actions and symmetry in chemistry
   24 Symmetry in biology and the medical sciences
   25 Group actions and symmetry in material science and engineering
   26 Symmetry in arts and architecture
   27 Group actions and symmetry in music
   28 Symmetries in chaos and fractals
   29 Acknowledgements and references
  References
Part II: Mapping Class Groups and Teichm¨uller Spaces Actions of Mapping Class Groups
  Athanase Papadopoulos
   1 Introduction
   2 Rigidity and actions ofmapping class groups
   3 Actions on foliations and laminations
   4 Some perspectives
  References
  The Mapping Class Group Action on the Horofunction Compactification of Teichm¨uller Space
  Weixu Su
   1 Introduction
   2 Background
   3 Thurston’s compactification of Teichm¨uller space
   4 Compactification of Teichm¨uller space by extremal length
   5 Analogies between the Thurston metric and the Teichm¨uller metric
   6 Detour cost and Busemann points
   7 The extended mapping class group as an isometry group
   8 On the classification of mapping class actions on Thurston’s metric
   9 Some questions
  References
  Schottky Space and Teichm¨uller Disks
  Frank Herrlich
   1 Introduction
   2 Schottky coverings
   3 Schottky space
   4 Schottky and Teichm¨uller space
   5 Schottky space as amoduli space
   6 Teichm¨uller disks
   7 Veech groups
   8 Horizontal cut systems
   9 Teichm¨uller disks in Schottky space
  References
  Topological Characterization of the Asymptotically Trivial Mapping Class Group
  Ege Fujikawa
   1 Introduction
   2 Preliminaries
   3 Discontinuity of the Teichm¨uller modular group action
   4 The intermediate Teichm¨uller space
   5 Dynamics of the Teichm¨uller modular group
   6 A fixed point theorem for the asymptotic Teichm¨uller modular group
   7 Periodicity of asymptotically Teichm¨uller modular transformation
  References
  The Universal Teichm¨uller Space and Diffeomorphisms of the Circle with H¨older Continuous Derivatives
  Katsuhiko Matsuzaki
   1 Introduction
   2 Quasisymmetric automorphisms of the circle
   3 The universal Teichm¨uller space
   4 Quasisymmetric functions on the real line
   5 Symmetric automorphisms and functions
   6 The small subspace
   7 Diffeomorphisms of the circle with H¨older continuous derivatives
   8 The Teichm¨uller space of circle diffeomorphisms
  References
  On the Johnson Homomorphisms of the Mapping Class Groups of urfaces
   Takao Satoh
   1 Introduction
   2 Notation and conventions
   3 Mapping class groups of surfaces
   4 Johnson homomorphisms of Aut Fn
   5 Johnson homomorphisms of Mg,1
   6 Some other applications of the Johnson homomorphisms
   Acknowledgements
  References
Part III: Hyperbolic Manifolds and Locally Symmetric Spaces The Geometry and Arithmetic of Kleinian Groups
  Gaven JMartin
   1 Introduction
   2 The volumes of hyperbolic orbifolds
   3 The Margulis constant for Kleinian groups
   4 The general theory
   5 Basic concepts
   6 Two-generator groups
   7 Polynomial trace identities and inequalities
   8 Arithmetic hyperbolic geometry
   9 Spaces of discrete groups, p, q ∈ {3, 4, 5}
   10 (p, q, r)-Kleinian groups
  References
  Weakly Commensurable Groups, with Applications to Differential Geometry
  Gopal Prasad and Andrei SRapinchuk
   1 Introduction
   2 Weakly commensurable Zariski-dense subgroups
   3 Results on weak commensurability of S-arithmetic groups
   4 Absolutely almost simple algebraic groups having the same maximal tori
   5 A finiteness result
   6 Back to geometry
   Acknowledgements
  References
Part IV: Knot Groups
  Representations of Knot Groups into SL(2,C) and Twisted Alexander Polynomials
  Takayuki Morifuji
   1 Introduction
   2 Alexander polynomials
   3 Representations of knot groups into SL(2,C)
   4 Deformations of representations of knot groups
   5 Twisted Alexander polynomials
   6 Twisted Alexander polynomials of hyperbolic knots
   Acknowledgements
  References
  Meridional and Non-meridional Epimorphisms between Knot Groups
  Masaaki Suzuki
   1 Introduction
   2 Some relations on the set of knots
   3 Twisted Alexander polynomial and epimorphism
   4 Meridional epimorphisms
   5 Non-meridional epimorphisms
   6 Therelation≥ on the set of prime knots
   7 Simon’s conjecture and other problems
   Acknowledgements
  References

丘成桐,哈佛大学数学系教授,国际著名数学家,微分几何大师,Fields奖和Wolf奖获得者。

季理真,密歇根大学数学系教授,几何学家。

数学高级讲义ALM

适合于从初学者到相关领域专家的各个层次读者阅读。

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加