购物车中还没有商品,赶紧选购吧!
ISBN:
Hyperbolic Chaos: A Physicist`s View双曲混
商品价格
降价通知
定价
手机购买
商品二维码
领 券
配送
上海市
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:Hyperbolic Chaos: A Physicist`s View双曲混
物料号 :31964-00
重量:0.000千克
ISBN:9787040319644
出版社:高等教育出版社
出版年月:2011-09
作者:Sergey P. Kuznetsov
定价:69.00
页码:320
装帧:精装
版次:1
字数:400
开本:16开
套装书:否

《双曲混沌:一个物理学家的观点》从物理学而不是数学概念的角度介绍了目前动力系统中均匀双曲吸引子研究的进展小结构稳定的吸引子表现出强烈的随机性,但 是对于动力系统中函数和参数的变化不敏感。基于双曲混沌的特征,《双曲混沌:一个物理学家的观点》将展示如何找到物理系统中的双曲混沌吸引子,以及怎样设 计具有双曲混沌的物理系统。

《双曲混沌:一个物理学家的观点》可以作为研究生和高年级本科生教材,也可以供大学教授以及物理学、机械学和工程学相关研究人员参考。

Front Matter
Part I Basic Notions and Review
  1 Dynamical Systems and Hyperbolicity
   1.1 Dynamical systems: basic notions
   1.2 Model examples of chaotic attractors
   1.3 Notion of hyperbolicity
   1.4 Content and conclusions of the hyperbolic theory
   References
  2 Possible Occurrence of Hyperbolic Attractors
   2.1 The Newhouse-Ruelle-Takens theorem and its relation to the uniformly hyperbolic attractors
   2.2 Lorenz model and its modifications
   2.3 Some maps with uniformly hyperbolic attractors
   2.4 From DA to the Plykin type attractor
   2.5 Hunt’s example: Suspending the Plykin type attractor
   2.6 The triple linkage: A mechanical system with hyperbolic dynamics
   2.7 A possible occurrence of a Plykin type attractor in Hindmarsh-Rose neuron model
   2.8 Blue sky catastrophe and birth of the Smale-Williams attractor
   2.9 Taffy-pulling machine
   References
Part II Low-Dimensional Models
  3 Kicked Mechanical Models and Differential Equations with Periodic Switch
   3.1 Smale-Williams solenoid in mechanical model: Motion of a particle on a plane under periodic kicks
   3.2 A set of switching differential equations with attractor of Smale-Williams type
   3.3 Explicit dynamical system with attractor of Plykin type
   3.4 Plykin-like attractor in smooth non-autonomous system
   References
  4 Non-Autonomous Systems of Coupled Self-Oscillators
   4.1 Van der Pol oscillator
   4.2 Smale-Williams attractor in a non-autonomous system of alternately excited van der Pol oscillators
   4.3 System of alternately excited van der Pol oscillators in terms of slow complex amplitudes
   4.4 Non-resonance excitation transfer
   4.5 Plykin-like attractor in non-autonomous coupled oscillators
   References
  5 Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar′e Maps
   5.1 Autonomous system of two coupled oscillators with self-regulating alternating excitation
   5.2 System constructed on a base of the predator-prey model
   5.3 Example of blue sky catastrophe accompanied by a birth of Smale-Williams attractor
   References
  6 Parametric Generators of Hyperbolic Chaos
   6.1 Parametric excitation of coupled oscillatorsThree-frequency parametric generator and its operation
   6.2 Hyperbolic chaos in parametric oscillator with Q-switch and pump modulation
   6.3 Parametric generator of hyperbolic chaos based on four coupled oscillators with pump modulation
   References
  7 Recognizing the Hyperbolicity: Cone Criterion and Other Approaches
   7.1 Verification of transversality for manifolds
   7.2 Visualization of invariant measures
   7.3 Cone criterion and examples of its application
   References
Part III Higher-Dimensional Systems and Phenomena
  8 Systems of Four Alternately Excited Non-autonomous Oscillators
   8.1 Arnold’s cat map dynamics in a system of coupled non-autonomous van der Pol oscillators
   8.2 Dynamics corresponding to hyperchaotic maps
   8.3 Hyperchaos and synchronous chaos in a system of coupled non-autonomous oscillators
   References
  9 Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle
   9.1 Heteroclinic connection: an example of Guckenheimer and Holmes
   9.2 Attractor of Smale-Williams type in a system of three coupled self-oscillators
   9.3 Attractor with dynamics governed by the Arnold cat map
   9.4 Model with hyperchaos
   9.5 An autonomous system with attractor of Smale-Williams type with resonance transfer of excitation in a ring array of van der Pol oscillators
   References
  10 Systems with Time-delay Feedback
   10.1 Some notions concerning differential equations with deviating argument
   10.2 Van der Pol oscillator with delayed feedback, parameter modulation and auxiliary signal
   10.3 Van der Pol oscillator with two delayed feedback loops and parameter modulation
   10.4 Autonomous time-delay system
   References
  11 Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators
   11.1 Kuramoto transition in ensemble of globally coupled oscillators
   11.2 Model of two alternately synchronized ensembles of oscillators
   References
Part IV Experimental Studies
  12 Electronic Device with Attractor of Smale-Williams Type
   12.1 Scheme of the device and the principle of operation
   12.2 Experimental observation of the Smale-Williams attractor
   References
  13 Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps
   13.1 Van der Pol oscillator with delayed feedback, parameter modulation and auxiliary signal
   13.2 Van der Pol oscillator with two delayed feedback loops and parameter modulation
   References
  14 Conclusion
   References
Appendix A Computation of Lyapunov Exponents:The Benettin Algorithm
  References
Appendix B H′enon and Ikeda Maps
  References
Appendix C Smale’s Horseshoe and Homoclinic Tangle
  References
Appendix D Fractal Dimensions and Kaplan-Yorke Formula
  References
Appendix E Hunt’s Model: Formal Definition
  References
Appendix F Geodesics on a Compact Surface of Negative Curvature
  References
AppendixG Effect of Noise in a System with a Hyperbolic Attractor
  References
Index

非线性物理科学系列NPS

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加