本书主要介绍多元有理函数系统与电网络的结构和性质,详细讨论了域F(z)上的矩阵及其特征多项式的可约性条件;定义了1型矩阵并证明了它的两个基本性质;介绍了独立参量的变量代换条件,域F(z)上线性系统的结构能控能观性问题、电网络的结构性质、RLCM网络的可断性和可约性及能控能观性、有源网络状态方程的存在性条件、能控能观性条件等;附录给出了本书用到的一些知识。 本书适合电子电气、自动化和应用数学(矩阵理论)方向的研究生、科研和工程技术人员参考阅读。 To overcome the problems of system theory and network theory over real field, this book uses matrices over the field F(z) of rational functions in multi-parameters describing coefficient matrices of systems and networks and makes systems and network description over F(z) and researches their structural properties: reducible condition of a class of matrices over F(z) and their characteristic polynomial; type-1 matrix and two basic properties; variable replacement conditions for independent parameters; structural controllability and observability of linear systems over F(z); separability, reducibility, controllability, observability and structural conditions of networks over F(z), and so on. This book involves three subjects: systems, networks and matrices over F(z), which is an achievement of interdisciplinary research. |
Front Matter |
|
|
|
|
新一代信息科学与技术丛书 |
|
|
|
|
|