本书探讨计算交换代数与凸多胞体理论间的相互作用,内容围绕多项式环的一种特殊理想类(环理想类)展开。环理想类可由单项式差生成的素理想或(不必正规的)环簇的定义理想来描述。 书中的特定应用反映出Gr?bner基的研究的跨学科性质,这些应用属于整数规划和计算统计学的范畴。书中的数学工具涉及交换代数、组合学和多面体几何。