购物车中还没有商品,赶紧选购吧!
ISBN:
概率论(影印版)
商品价格
降价通知
定价
手机购买
商品二维码
配送
上海市
服务
高教自营 发货并提供售后服务。
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:概率论(影印版)
物料号 :59302-00
重量:0.000千克
ISBN:9787040593020
出版社:高等教育出版社
出版年月:2023-03
作者:Daniel W. Stroock
定价:135.00
页码:308
装帧:精装
版次:1
字数:500
开本:16开
套装书:否
https://gjs.bg-online.com.cn/blobdata/20230516/44354FC34C6744EBA6B593435A8A8740.jpg

本书涵盖了现代概率论的基础知识,包含五部分内容。第一部分是有限和可数样本空间上的概率理论;第二部分是测度理论的简明介绍;第三部分是概率理论的一些初步应用,包括独立性和条件期望;第四部分讨论了高斯随机变量、马尔可夫链和一些连续参数过程,包括布朗运动;第五部分讨论了鞅,包括离散和连续参数过程。 本书是对概率论和研究概率论所需的测度理论的全面介绍。本书可供专业研究人员、讲授研究生阶段概率课程的教师以及在工作和学习中需要任何概率知识的读者阅读参考。

前辅文
Chapter 1. Some Background and Preliminaries
  1.1 The Language of Probability Theory
   1.1.1. Sample Spaces and Events
   1.1.2. Probability Measures
  Exercises for 1.1
  1.2 Finite and Countable Sample Spaces
   1.2.1. Probability Theory on a Countable Space
   1.2.2. Uniform Probabilities and Coin Tossing
   1.2.3. Tournaments
   1.2.4. Symmetric Random Walk
   1.2.5. De Moivre’s Central Limit Theorem
   1.2.6. Independent Events
   1.2.7. The Arc Sine Law
   1.2.8. Conditional Probability
  Exercises for 1.2
  1.3 Some Non-Uniform Probability Measures
   1.3.1. Random Variables and Their Distributions
   1.3.2. Biased Coins
   1.3.3. Recurrence and Transience of Random Walks
  Exercises for 1.3
  1.4 Expectation Values
   1.4.1. Some Elementary Examples
   1.4.2. Independence and Moment Generating Functions
   1.4.3. Basic Convergence Results
  Exercises for 1.4
  Comments on Chapter 1
Chapter 2. Probability Theory on Uncountable Sample Spaces
  2.1 A Little Measure Theory
   2.1.1. Sigma Algebras, Measurable Functions, and Measures
   2.1.2. Π- and Λ-Systems
  Exercises for 2.1
  2.2 A Construction of Pp on {0, 1}Z+
   2.2.1. The Metric Space {0, 1}Z+
   2.2.2. The Construction
  Exercises for 2.2
  2.3 Other Probability Measures
   2.3.1. The Uniform Probability Measure on [0, 1]
   2.3.2. Lebesgue Measure on R
   2.3.3. Distribution Functions and Probability Measures
  Exercises for 2.3
  2.4 Lebesgue Integration
   2.4.1. Integration of Functions
   2.4.2. Some Properties of the Lebesgue Integral
   2.4.3. Basic Convergence Theorems
   2.4.4. Inequalities
   2.4.5. Fubini’s Theorem
  Exercises for 2.4
  2.5 Lebesgue Measure on RN
   2.5.1. Polar Coordinates
   2.5.2. Gaussian Computations and Stirling’s Formula
  Exercises for 2.5
  Comments on Chapter 2
Chapter 3. Some Applications to Probability Theory
  3.1 Independence and Conditioning
   3.1.1. Independent σ-Algebras
   3.1.2. Independent Random Variables
   3.1.3. Conditioning
   3.1.4. Some Properties of Conditional Expectations
  Exercises for 3.1
  3.2 Distributions that Admit a Density
   3.2.1. Densities
   3.2.2. Densities and Conditioning
  Exercises for 3.2
  3.3 Summing Independent Random Variables
   3.3.1. Convolution of Distributions
   3.3.2. Some Important Examples
   3.3.3. Kolmogorov’s Inequality and the Strong Law
  Exercises for 3.3
  Comments on Chapter 3
Chapter 4. The Central Limit Theorem and Gaussian Distributions
  4.1 The Central Limit Theorem
   4.1.1. Lindeberg’s Theorem
  Exercises for 4.1
  4.2 Families of Normal Random Variables
   4.2.1. Multidimensional Gaussian Distributions
   4.2.2. Standard Normal Random Variables
   4.2.3. More General Normal Random Variables
   4.2.4. A Concentration Property of Gaussian Distributions
   4.2.5. Linear Transformations of Normal Random Variables
   4.2.6. Gaussian Families
  Exercises for 4.2
  Comments on Chapter 4
Chapter 5. Discrete Parameter Stochastic Processes
  5.1 Random Walks Revisited
   5.1.1. Immediate Rewards
   5.1.2. Computations via Conditioning
  Exercises for 5.1
  5.2 Processes with the Markov Property
   5.2.1. Sequences of Dependent Random Variables
   5.2.2. Markov Chains
   5.2.3. Long-Time Behavior
   5.2.4. An Extension
  Exercises for 5.2
  5.3 Markov Chains on a Countable State Space
   5.3.1. The Markov Property
   5.3.2. Return Times and the Renewal Equation
   5.3.3. A Little Ergodic Theory
  Exercises for 5.3
  Comments on Chapter 5
Chapter 6. Some Continuous-Time Processes
  6.1 Transition Probability Functions and Markov Processes
   6.1.1. Transition Probability Functions
  Exercises for 6.1
  6.2 Markov Chains Run with a Poisson Clock
   6.2.1. The Simple Poisson Process
   6.2.2. A Generalization
   6.2.3. Stationary Measures
  Exercises for 6.2
  6.3 Brownian Motion
   6.3.1. Some Preliminaries
   6.3.2. L´evy’s Construction
   6.3.3. Some Elementary Properties of Brownian Motion
   6.3.4. Path Properties
   6.3.5. The Ornstein–Uhlenbeck Process
  Exercises for 6.3
  Comments on Chapter 6
Chapter 7. Martingales
  7.1 Discrete Parameter Martingales
   7.1.1. Doob’s Inequality
  Exercises for 7.1
  7.2 The Martingale Convergence Theorem
   7.2.1. The Convergence Theorem
   7.2.2. Application to the Radon–Nikodym Theorem
  Exercises for 7.2
  7.3 Stopping Times
   7.3.1. Stopping Time Theorems
   7.3.2. Reversed Martingales
   7.3.3. Exchangeable Sequences
  Exercises for 7.3
  7.4 Continuous Parameter Martingales
   7.4.1. Progressively Measurable Functions
   7.4.2. Martingales and Submartingales
   7.4.3. Stopping Times Again
   7.4.4. Continuous Martingales and Brownian Motion
   7.4.5. Brownian Motion and Differential Equations
  Exercises for 7.4
  Comments on Chapter 7
Notation
Bibliography
Index

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加