购物车中还没有商品,赶紧选购吧!
ISBN:
调和分析:分析综合教程(第3部分)(影印版)
商品价格
降价通知
定价
手机购买
商品二维码
领 券
配送
上海市
数量
库存   个

推荐商品

  • 商品详情
手机购买
商品二维码
加入购物车
价格:
数量:
库存   个

商品详情

商品名称:调和分析:分析综合教程(第3部分)(影印版)
物料号 :59311-00
重量:0.000千克
ISBN:9787040593112
出版社:高等教育出版社
出版年月:2023-03
作者:Barry Simon
定价:269.00
页码:788
装帧:精装
版次:1
字数:1300
开本
套装书:否

Poincaré 奖得主Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第3部分讨论了点态极限(通过包含遍历定理和鞅收敛来超越通常关注的Hardy-Littlewood极大函数)、调和函数和位势论、框架和小波、[Math Processing Error] 空间(包括有界均值振荡(BMO))以及最后一章中的许多不等式,包括Sobolev空间、Calderon-Zygmund估计和超压缩半群,进而回到第1部分的主题。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。

前辅文
Chapter 1. Preliminaries
  1.1. Notation and Terminology
  1.2. Some Results for Real Analysis
  1.3. Some Results from Complex Analysis
  1.4. Green’s Theorem
Chapter 2. Pointwise Convergence Almost Everywhere
  2.1. The Magic of Maximal Functions
  2.2. Distribution Functions, Weak-L1, and Interpolation
  2.3. The Hardy–Littlewood Maximal Inequality
  2.4. Differentiation and Convolution
  2.5. Comparison of Measures
  2.6. The Maximal and Birkhoff Ergodic Theorems
  2.7. Applications of the Ergodic Theorems
  2.8. Bonus Section: More Applications of the Ergodic Theorems
  2.9. Bonus Section: Subadditive Ergodic Theorem and Lyapunov Behavior
  2.10. Martingale Inequalities and Convergence
  2.11. The Christ–Kiselev Maximal Inequality and Pointwise Convergence of Fourier Transforms
Chapter 3. Harmonic and Subharmonic Functions
  3.1. Harmonic Functions
  3.2. Subharmonic Functions
  3.3. Bonus Section: The Eremenko–Sodin Proof of Picard’s Theorem
  3.4. Perron’s Method, Barriers, and Solution of the Dirichlet Problem
  3.5. Spherical Harmonics
  3.6. Potential Theory
  3.7. Bonus Section: Polynomials and Potential Theory
  3.8. Harmonic Function Theory of Riemann Surfaces
Chapter 4. Bonus Chapter: Phase Space Analysis
  4.1. The Uncertainty Principle
  4.2. The Wavefront Sets and Products of Distributions
  4.3. Microlocal Analysis: A First Glimpse
  4.4. Coherent States
  4.5. Gabor Lattices
  4.6. Wavelets
Chapter 5. Hp Spaces and Boundary Values of Analytic Functions on the Unit Disk
  5.1. Basic Properties of Hp
  5.2. H2
  5.3. First Factorization (Riesz) and Hp
  5.4. Caratheodory Functions, h1, and the Herglotz Representation
  5.5. Boundary Value Measures
  5.6. Second Factorization (Inner and Outer Functions)
  5.7. Conjugate Functions and M. Riesz’s Theorem
  5.8. Homogeneous Spaces and Convergence of Fourier Series
  5.9. Boundary Values of Analytic Functions in the Upper Half-Plane
  5.10. Beurling’s Theorem
  5.11. Hp-Duality and BMO
  5.12. Cotlar’s Theorem on Ergodic Hilbert Transforms
Chapter 6. Bonus Chapter: More Inequalities
  6.1. Lorentz Spaces and Real Interpolation
  6.2. Hardy-Littlewood–Sobolev and Stein–Weiss Inequalities
  6.3. Sobolev Spaces; Sobolev and Rellich–Kondrachov Embedding Theorems
  6.4. The Calderon–Zygmund Method
  6.5. Pseudodifferential Operators on Sobolev Spaces and the Calderon–Vaillancourt Theorem
  6.6. Hypercontractivity and Logarithmic Sobolev Inequalities
  6.7. Lieb–Thirring and Cwikel–Lieb–Rosenblum Inequalities
  6.8. Restriction to Submanifolds
  6.9. Tauberian Theorems
Bibliography
Symbol Index
Subject Index
Author Index
Index of Capsule Biographies

对比栏

1

您还可以继续添加

2

您还可以继续添加

3

您还可以继续添加

4

您还可以继续添加