本书介绍了关于量子光谱和动力学上无序效应的数学理论入门。涵盖的主题从自伴算子的谱和动力学的基本理论到这里通过分数矩量法提出的Anderson局域化,再到最近关于共振离域的结果。全书共有十七章,每章都集中于特定的数学主题或将理论与物理相关联的例证,例如量子Hall效应的影响。数学章节包括量子光谱和动力学的一般关系、遍历性及其含义、建立光谱和动力学局域化机制的方法、Green函数的应用和性质、它与本征函数关联子的关系、Herglotz-Pick函数的分数矩、树图算子的相图、共振离域、谱统计猜想及相关结果。此外,本书还包含作者在各自机构所开设课程的笔记,这些笔记被研究生和博士后研究人员广泛参考。 --------------------------------------------------------- 自从上一本关于这个主题的重要著作问世以来,已经有将近25年的时间了。作者巧妙地更新了主题,但更重要的是,以清晰的方式呈现了他们自己的概率洞见。这本精彩的书非常适合研究人员和高年级学生阅读。 —Barry Simon, California Institute of Technology |
|
|
|
|
|
|
|
|
|
|
|